Bounded-From-Below Solutions of the Hamilton-Jacobi Equation for Optimal Control Problems with Exit Times: Vanishing Lagrangians, Eikonal Equations, and Shape-From-Shading
نویسنده
چکیده
We study the Hamilton-Jacobi equation for undiscounted exit time control problems with general nonnegative Lagrangians using the dynamic programming approach. We prove theorems characterizing the value function as the unique bounded-from-below viscosity solution of the Hamilton-Jacobi equation which is null on the target. The result applies to problems with the property that all trajectories satisfying a certain integral condition must stay in a bounded set. We allow problems for which the Lagrangian is not uniformly bounded below by positive constants, in which the hypotheses of the known uniqueness results for Hamilton-Jacobi equations are not satisfied. We apply our theorems to eikonal equations from geometric optics, shapefrom-shading equations from image processing, and variants of the Fuller Problem.
منابع مشابه
Numerical Approximation of the Maximal Solutions for a Class of Degenerate Hamilton-Jacobi Equations
In this paper we study an approximation scheme for a class of Hamilton-Jacobi problems for which uniqueness of the viscosity solution does not hold. This class includes the Eikonal equation arising in the Shape from Shading problem. We show that, if an appropriate stability condition is satissed, the scheme converges to the maximal viscosity solution of the problem. Furthermore we give an estim...
متن کاملFurther results on the Bellman equation for exit time optimal control problems with nonnegative Lagrangians: The case of Fuller’s Problem
The theory of viscosity solutions forms the basis for much current work in optimal control and numerical analysis (cf. [1, 2, 3]). In two recent papers (cf. [4], [5]), we proved theorems characterizing the value function in deterministic optimal control as the unique viscosity solution of the Bellman equation that satisfies appropriate side conditions. The results applied to a very general clas...
متن کاملA Paraxial Formulation for the Viscosity Solution of Quasi-P Eikonal Equations
Stationary quasi-P eikonal equations, stationary Hamilton-Jacobi equations, arise from the asymptotic approximation of anisotropic wave propagation. A paraxial formulation of the quasi-P eikonal equation results in a paraxial quasi-P eikonal equation, an evolution Hamilton-Jacobi equation in a preferred direction, which provides a fast and efficient way for computing viscosity solutions of quas...
متن کاملRecent Existence and Uniqueness Results in Shading Analysis
A smooth object depicted in a monochrome image will often exhibit brightness variation, or shading. Of interest in computer vision is the problem of how object shape may be recovered from such an image. When the imaging conditions are such that an overhead point-source illuminates a smooth Lambertian surface, the problem may be formulated as that of finding a solution to an eikonal equation. Th...
متن کاملOn the dynamic programming approach for the 3D Navier-Stokes equations
The dynamic programming approach for the control of a 3D flow governed by the stochastic Navier-Stokes equations for incompressible fluid in a bounded domain is studied. By a compactness argument, existence of solutions for the associated Hamilton-Jacobi-Bellman equation is proved. Finally, existence of an optimal control through the feedback formula and of an optimal state is discussed.
متن کامل